Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Parasitol ; 107(4): 593-599, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34324665

RESUMO

Several mortality events involving barn swallows (Hirundo rustica) and cliff swallows (Petrochelidon pyrrhonota) were reported in the Upper Midwestern states in 2017 and 2018. Barn swallow mortality followed unseasonal cold snaps, with the primary cause of death being emaciation with concurrent air sac nematodiasis. Lesions in cliff swallows were consistent with blunt force trauma from suspected car impacts. Examination of air sac nematodes from both bird species revealed morphological characters consistent with Diplotriaena obtusa. Sequence analysis of the partial 18S rRNA gene indicated the samples clustered with other species in the genus Diplotriaena. These nematodes provide a link between morphological specimens and DNA sequence data for D. obtusa.


Assuntos
Doenças das Aves/parasitologia , Infecções por Spirurida/veterinária , Spirurina/isolamento & purificação , Andorinhas/parasitologia , Cavidade Abdominal/parasitologia , Sacos Aéreos/parasitologia , Animais , Doenças das Aves/epidemiologia , Doenças das Aves/mortalidade , Doenças das Aves/patologia , Temperatura Baixa , Meio-Oeste dos Estados Unidos/epidemiologia , Filogenia , RNA Ribossômico 18S/genética , Infecções por Spirurida/epidemiologia , Infecções por Spirurida/parasitologia , Infecções por Spirurida/patologia , Spirurina/classificação , Spirurina/genética , Ferimentos não Penetrantes/mortalidade , Ferimentos não Penetrantes/veterinária
2.
Microbiol Resour Announc ; 9(27)2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32616635

RESUMO

Brugia pahangi is a zoonotic parasite that is closely related to human-infecting filarial nematodes. Here, we report the nearly complete genome of Brugia pahangi, including assemblies of four autosomes and an X chromosome, with only seven gaps. The Y chromosome is still not completely assembled.

3.
Microbiol Resour Announc ; 9(27)2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32616636

RESUMO

Lymphatic filariasis is a devastating disease caused by filarial nematode roundworms, which contain obligate Wolbachia endosymbionts. Here, we assembled the genome of wBp, the Wolbachia endosymbiont of the filarial nematode Brugia pahangi, from Illumina, Pacific Biosciences, and Oxford Nanopore data. The complete, circular genome is 1,072,967 bp.

4.
Microbiol Resour Announc ; 9(24)2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32527783

RESUMO

Lymphatic filariasis affects ∼120 million people and can result in elephantiasis and hydrocele. Here, we report the nearly complete genome sequence of the best-studied causative agent of lymphatic filariasis, Brugia malayi The assembly contains four autosomes, an X chromosome, and only eight gaps but lacks a contiguous sequence for the known Y chromosome.

5.
Nat Commun ; 11(1): 1964, 2020 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-32327641

RESUMO

Sex determination mechanisms often differ even between related species yet the evolution of sex chromosomes remains poorly understood in all but a few model organisms. Some nematodes such as Caenorhabditis elegans have an XO sex determination system while others, such as the filarial parasite Brugia malayi, have an XY mechanism. We present a complete B. malayi genome assembly and define Nigon elements shared with C. elegans, which we then map to the genomes of other filarial species and more distantly related nematodes. We find a remarkable plasticity in sex chromosome evolution with several distinct cases of neo-X and neo-Y formation, X-added regions, and conversion of autosomes to sex chromosomes from which we propose a model of chromosome evolution across different nematode clades. The phylum Nematoda offers a new and innovative system for gaining a deeper understanding of sex chromosome evolution.


Assuntos
Evolução Molecular , Nematoides/genética , Infecções por Nematoides/parasitologia , Cromossomos Sexuais/genética , Animais , Brugia Malayi/genética , Caenorhabditis elegans/genética , Mapeamento Cromossômico , Feminino , Regulação da Expressão Gênica , Genoma Helmíntico/genética , Humanos , Masculino , Nematoides/classificação , Sequências Repetitivas de Ácido Nucleico/genética , Processos de Determinação Sexual/genética
6.
mSystems ; 4(6)2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31796568

RESUMO

To better understand the transcriptomic interplay of organisms associated with lymphatic filariasis, we conducted multispecies transcriptome sequencing (RNA-Seq) on the filarial nematode Brugia malayi, its Wolbachia endosymbiont wBm, and its laboratory vector Aedes aegypti across the entire B. malayi life cycle. In wBm, transcription of the noncoding 6S RNA suggests that it may be a regulator of bacterial cell growth, as its transcript levels correlate with bacterial replication rates. For A. aegypti, the transcriptional response reflects the stress that B. malayi infection exerts on the mosquito with indicators of increased energy demand. In B. malayi, expression modules associated with adult female samples consistently contained an overrepresentation of genes involved in chromatin remodeling, such as the bromodomain-containing proteins. All bromodomain-containing proteins encoded by B. malayi were observed to be upregulated in the adult female, embryo, and microfilaria life stages, including 2 members of the bromodomain and extraterminal (BET) protein family. The BET inhibitor JQ1(+), originally developed as a cancer therapeutic, caused lethality of adult worms in vitro, suggesting that it may be a potential therapeutic that can be repurposed for treating lymphatic filariasis.IMPORTANCE The current treatment regimen for lymphatic filariasis is mostly microfilaricidal. In an effort to identify new drug candidates for lymphatic filariasis, we conducted a three-way transcriptomics/systems biology study of one of the causative agents of lymphatic filariasis, Brugia malayi, its Wolbachia endosymbiont wBm, and its vector host Aedes aegypti at 16 distinct B. malayi life stages. B. malayi upregulates the expression of bromodomain-containing proteins in the adult female, embryo, and microfilaria stages. In vitro, we find that the existing cancer therapeutic JQ1(+), which is a bromodomain and extraterminal protein inhibitor, has adulticidal activity in B. malayi.

7.
Artigo em Inglês | MEDLINE | ID: mdl-30533772

RESUMO

Here, we present a comprehensive transcriptomics data set of Brugia malayi, its Wolbachia endosymbiont wBm, and its vector host. This study samples from 16 stages across the entire B. malayi life cycle, including stage 1 through 4 larvae, adult males and females, embryos, immature microfilariae, and mature microfilariae.

8.
Sci Rep ; 8(1): 13377, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30190541

RESUMO

Enrichment methodologies enable the analysis of minor members in multi-species transcriptomic data. We compared the standard enrichment of bacterial and eukaryotic mRNA to a targeted enrichment using an Agilent SureSelect (AgSS) capture for Brugia malayi, Aspergillus fumigatus, and the Wolbachia endosymbiont of B. malayi (wBm). Without introducing significant systematic bias, the AgSS quantitatively enriched samples, resulting in more reads mapping to the target organism. The AgSS-enriched libraries consistently had a positive linear correlation with their unenriched counterparts (r2 = 0.559-0.867). Up to a 2,242-fold enrichment of RNA from the target organism was obtained following a power law (r2 = 0.90), with the greatest fold enrichment achieved in samples with the largest ratio difference between the major and minor members. While using a single total library for prokaryote and eukaryote enrichment from a single RNA sample could be beneficial for samples where RNA is limiting, we observed a decrease in reads mapping to protein coding genes and an increase in multi-mapping reads to rRNAs in AgSS enrichments from eukaryotic total RNA libraries compared to eukaryotic poly(A)-enriched libraries. Our results support a recommendation of using AgSS targeted enrichment on poly(A)-enriched libraries for eukaryotic captures, and total RNA libraries for prokaryotic captures, to increase the robustness of multi-species transcriptomic studies.


Assuntos
Aspergillus fumigatus/genética , Brugia Malayi/genética , RNA Bacteriano , RNA Fúngico , RNA de Helmintos , RNA Mensageiro , Análise de Sequência de RNA/métodos , Wolbachia/genética , Animais , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Bacteriano/isolamento & purificação , RNA Fúngico/química , RNA Fúngico/genética , RNA Fúngico/isolamento & purificação , RNA de Helmintos/química , RNA de Helmintos/genética , RNA de Helmintos/isolamento & purificação , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/isolamento & purificação
9.
BMC Genomics ; 16: 920, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26559510

RESUMO

BACKGROUND: Filarial nematodes cause debilitating human diseases. While treatable, recent evidence suggests drug resistance is developing, necessitating the development of novel targets and new treatment options. Although transcriptomic and proteomic studies around the nematode life cycle have greatly enhanced our knowledge, whole organism approaches have not provided spatial resolution of gene expression, which can be gained by examining individual tissues. Generally, due to their small size, tissue dissection of human-infecting filarial nematodes remains extremely challenging. However, canine heartworm disease is caused by a closely related and much larger filarial nematode, Dirofilaria immitis. As with many other filarial nematodes, D. immitis contains Wolbachia, an obligate bacterial endosymbiont present in the hypodermis and developing oocytes within the uterus. Here, we describe the first concurrent tissue-specific transcriptomic and proteomic profiling of a filarial nematode (D. immitis) and its Wolbachia (wDi) in order to better understand tissue functions and identify tissue-specific antigens that may be used for the development of new diagnostic and therapeutic tools. METHODS: Adult D. immitis worms were dissected into female body wall (FBW), female uterus (FU), female intestine (FI), female head (FH), male body wall (MBW), male testis (MT), male intestine (MI), male head (MH) and 10.1186/s12864-015-2083-2 male spicule (MS) and used to prepare transcriptomic and proteomic libraries. RESULTS: Transcriptomic and proteomic analysis of several D. immitis tissues identified many biological functions enriched within certain tissues. Hierarchical clustering of the D. immitis tissue transcriptomes, along with the recently published whole-worm adult male and female D. immitis transcriptomes, revealed that the whole-worm transcriptome is typically dominated by transcripts originating from reproductive tissue. The uterus appeared to have the most variable transcriptome, possibly due to age. Although many functions are shared between the reproductive tissues, the most significant differences in gene expression were observed between the uterus and testis. Interestingly, wDi gene expression in the male and female body wall is fairly similar, yet slightly different to that of Wolbachia gene expression in the uterus. Proteomic methods verified 32 % of the predicted D. immitis proteome, including over 700 hypothetical proteins of D. immitis. Of note, hypothetical proteins were among some of the most abundant Wolbachia proteins identified, which may fulfill some important yet still uncharacterized biological function. CONCLUSIONS: The spatial resolution gained from this parallel transcriptomic and proteomic analysis adds to our understanding of filarial biology and serves as a resource with which to develop future therapeutic strategies against filarial nematodes and their Wolbachia endosymbionts.


Assuntos
Dirofilaria immitis/genética , Dirofilaria immitis/metabolismo , Proteoma , Simbiose , Transcriptoma , Wolbachia/genética , Wolbachia/metabolismo , Animais , Análise por Conglomerados , Biologia Computacional/métodos , Feminino , Perfilação da Expressão Gênica , Masculino , Especificidade de Órgãos/genética , Proteômica
10.
BMC Genomics ; 15: 1041, 2014 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-25433394

RESUMO

BACKGROUND: Dirofilaria immitis, or canine heartworm, is a filarial nematode parasite that infects dogs and other mammals worldwide. Current disease control relies on regular administration of anthelmintic preventives, however, relatively poor compliance and evidence of developing drug resistance could warrant alternative measures against D. immitis and related human filarial infections be taken. As with many other filarial nematodes, D. immitis contains Wolbachia, an obligate bacterial endosymbiont thought to be involved in providing certain critical metabolites to the nematode. Correlations between nematode and Wolbachia transcriptomes during development have not been examined. Therefore, we detailed the developmental transcriptome of both D. immitis and its Wolbachia (wDi) in order to gain a better understanding of parasite-endosymbiont interactions throughout the nematode life cycle. RESULTS: Over 215 million single-end 50 bp reads were generated from total RNA from D. immitis adult males and females, microfilariae (mf) and third and fourth-stage larvae (L3 and L4). We critically evaluated the transcriptomes of the various life cycle stages to reveal sex-biased transcriptional patterns, as well as transcriptional differences between larval stages that may be involved in larval maturation. Hierarchical clustering revealed both D. immitis and wDi transcriptional activity in the L3 stage is clearly distinct from other life cycle stages. Interestingly, a large proportion of both D. immitis and wDi genes display microfilarial-biased transcriptional patterns. Concurrent transcriptome sequencing identified potential molecular interactions between parasite and endosymbiont that are more prominent during certain life cycle stages. In support of metabolite provisioning between filarial nematodes and Wolbachia, the synthesis of the critical metabolite, heme, by wDi appears to be synchronized in a stage-specific manner (mf-specific) with the production of heme-binding proteins in D. immitis. CONCLUSIONS: Our integrated transcriptomic study has highlighted interesting correlations between Wolbachia and D. immitis transcription throughout the life cycle and provided a resource that may be used for the development of novel intervention strategies, not only for the treatment and prevention of D. immitis infections, but of other closely related human parasites as well.


Assuntos
Dirofilaria immitis/genética , Microfilárias/genética , Simbiose/genética , Wolbachia/genética , Animais , Dirofilaria immitis/patogenicidade , Dirofilariose/genética , Dirofilariose/parasitologia , Cães , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Estágios do Ciclo de Vida/genética , Masculino , Microfilárias/parasitologia , Wolbachia/patogenicidade
11.
PLoS Negl Trop Dis ; 8(8): e3096, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25165813

RESUMO

While bacterial symbionts influence a variety of host cellular responses throughout development, there are no documented instances in which symbionts influence early embryogenesis. Here we demonstrate that Wolbachia, an obligate endosymbiont of the parasitic filarial nematodes, is required for proper anterior-posterior polarity establishment in the filarial nematode B. malayi. Characterization of pre- and post-fertilization events in B. malayi reveals that, unlike C. elegans, the centrosomes are maternally derived and produce a cortical-based microtubule organizing center prior to fertilization. We establish that Wolbachia rely on these cortical microtubules and dynein to concentrate at the posterior cortex. Wolbachia also rely on PAR-1 and PAR-3 polarity cues for normal concentration at the posterior cortex. Finally, we demonstrate that Wolbachia depletion results in distinct anterior-posterior polarity defects. These results provide a striking example of endosymbiont-host co-evolution operating on the core initial developmental event of axis determination.


Assuntos
Evolução Biológica , Brugia Malayi/microbiologia , Polaridade Celular/fisiologia , Simbiose/fisiologia , Wolbachia/fisiologia , Animais , Brugia Malayi/genética , Brugia Malayi/fisiologia , Centrossomo/fisiologia , Dineínas/fisiologia , Centro Organizador dos Microtúbulos/fisiologia , Oócitos/fisiologia
12.
Parasitol Res ; 113(5): 1827-35, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24664084

RESUMO

In the present study, we describe intraperitoneal development of the FR3 strain of Brugia malayi in Mongolian jirds (Meriones unguiculatus). The third molt for male worms occurred between 4 and 7 days postinfection (dpi) and between 4 and 8 dpi for females. The fourth and final molt occurred between days 21 and 29 for males and 25 and 34 for females, considerably earlier than the times reported for subcutaneous infection models using cats and jirds. The timing of the third molt coincided largely with reports for subcutaneous Brugia pahangi infections of cats and jirds, but the final molt occurred considerably later and lasted longer than those reported for subcutaneous B. pahangi models. Spermatogenesis occurred by at least 50 dpi in adult males, and insemination of females likely occurred between 50 and 60 dpi. Microfilariae were observed in the uteri and ovejectors of adult females at 65 dpi.


Assuntos
Brugia Malayi/crescimento & desenvolvimento , Filariose/parasitologia , Gerbillinae/parasitologia , Animais , Brugia Malayi/anatomia & histologia , Brugia pahangi/crescimento & desenvolvimento , Feminino , Filariose/veterinária , Larva/anatomia & histologia , Larva/crescimento & desenvolvimento , Masculino , Cavidade Peritoneal/parasitologia
13.
PLoS Negl Trop Dis ; 5(11): e1261, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22140585

RESUMO

Filarial worms cause a variety of tropical diseases in humans; however, they are difficult to study because they have complex life cycles that require arthropod intermediate hosts and mammalian definitive hosts. Research efforts in industrialized countries are further complicated by the fact that some filarial nematodes that cause disease in humans are restricted in host specificity to humans alone. This potentially makes the commitment to research difficult, expensive, and restrictive. Over 40 years ago, the United States National Institutes of Health-National Institute of Allergy and Infectious Diseases (NIH-NIAID) established a resource from which investigators could obtain various filarial parasite species and life cycle stages without having to expend the effort and funds necessary to maintain the entire life cycles in their own laboratories. This centralized resource (The Filariasis Research Reagent Resource Center, or FR3) translated into cost savings to both NIH-NIAID and to principal investigators by freeing up personnel costs on grants and allowing investigators to divert more funds to targeted research goals. Many investigators, especially those new to the field of tropical medicine, are unaware of the scope of materials and support provided by the FR3. This review is intended to provide a short history of the contract, brief descriptions of the fiilarial species and molecular resources provided, and an estimate of the impact the resource has had on the research community, and describes some new additions and potential benefits the resource center might have for the ever-changing research interests of investigators.


Assuntos
Pesquisa Biomédica/métodos , Filariose/epidemiologia , Filariose/prevenção & controle , Recursos em Saúde/provisão & distribuição , Indicadores e Reagentes , National Institute of Allergy and Infectious Diseases (U.S.) , Animais , Humanos , Pesquisadores , Estados Unidos
14.
PLoS Negl Trop Dis ; 5(12): e1409, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22180794

RESUMO

BACKGROUND: Developing intervention strategies for the control of parasitic nematodes continues to be a significant challenge. Genomic and post-genomic approaches play an increasingly important role for providing fundamental molecular information about these parasites, thus enhancing basic as well as translational research. Here we report a comprehensive genome-wide survey of the developmental transcriptome of the human filarial parasite Brugia malayi. METHODOLOGY/PRINCIPAL FINDINGS: Using deep sequencing, we profiled the transcriptome of eggs and embryos, immature (≤3 days of age) and mature microfilariae (MF), third- and fourth-stage larvae (L3 and L4), and adult male and female worms. Comparative analysis across these stages provided a detailed overview of the molecular repertoires that define and differentiate distinct lifecycle stages of the parasite. Genome-wide assessment of the overall transcriptional variability indicated that the cuticle collagen family and those implicated in molting exhibit noticeably dynamic stage-dependent patterns. Of particular interest was the identification of genes displaying sex-biased or germline-enriched profiles due to their potential involvement in reproductive processes. The study also revealed discrete transcriptional changes during larval development, namely those accompanying the maturation of MF and the L3 to L4 transition that are vital in establishing successful infection in mosquito vectors and vertebrate hosts, respectively. CONCLUSIONS/SIGNIFICANCE: Characterization of the transcriptional program of the parasite's lifecycle is an important step toward understanding the developmental processes required for the infectious cycle. We find that the transcriptional program has a number of stage-specific pathways activated during worm development. In addition to advancing our understanding of transcriptome dynamics, these data will aid in the study of genome structure and organization by facilitating the identification of novel transcribed elements and splice variants.


Assuntos
Brugia Malayi/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de RNA/métodos , Animais , Brugia Malayi/crescimento & desenvolvimento , Brugia Malayi/metabolismo , Análise por Conglomerados , Biologia Computacional , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Gerbillinae , Estágios do Ciclo de Vida/genética , Masculino , Microfilárias/genética , Microfilárias/metabolismo , RNA de Helmintos/análise , RNA de Helmintos/genética , RNA Mensageiro/análise , RNA Mensageiro/genética , Transcriptoma
15.
PLoS Negl Trop Dis ; 4(11): e875, 2010 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-21072236

RESUMO

Mosquitoes in the Culex pipiens complex thrive in temperate and tropical regions worldwide, and serve as efficient vectors of Bancroftian lymphatic filariasis (LF) caused by Wuchereria bancrofti in Asia, Africa, the West Indies, South America, and Micronesia. However, members of this mosquito complex do not act as natural vectors for Brugian LF caused by Brugia malayi, or for the cat parasite B. pahangi, despite their presence in South Asia where these parasites are endemic. Previous work with the Iowa strain of Culex pipiens pipiens demonstrates that it is equally susceptible to W. bancrofti as is the natural Cx. p. pipiens vector in the Nile Delta, however it is refractory to infection with Brugia spp. Here we report that the infectivity barrier for Brugia spp. in Cx. p. pipiens is the mosquito midgut, which inflicts internal and lethal damage to ingested microfilariae. Following per os Brugia exposures, the prevalence of infection is significantly lower in Cx. p. pipiens compared to susceptible mosquito controls, and differs between parasite species with <50% and <5% of Cx. p. pipiens becoming infected with B. pahangi and B. malayi, respectively. When Brugia spp. mf were inoculated intrathoracically to bypass the midgut, larvae developed equally well as in controls, indicating that, beyond the midgut, Cx. p. pipiens is physiologically compatible with Brugia spp. Mf isolated from Cx. p. pipiens midguts exhibited compromised motility, and unlike mf derived from blood or isolated from the midguts of Ae. aegypti, failed to develop when inoculated intrathoracically into susceptible mosquitoes. Together these data strongly support the role of the midgut as the primary infection barrier for Brugia spp. in Cx. p. pipiens. Examination of parasites recovered from the Cx. p. pipiens midgut by vital staining, and those exsheathed with papain, suggest that the damage inflicted by the midgut is subcuticular and disrupts internal tissues. Microscopic studies of these worms reveal compromised motility and sharp bends in the body; and ultrastructurally the presence of many fluid or carbohydrate-filled vacuoles in the hypodermis, body wall, and nuclear column. Incubation of Brugia mf with Cx. p. pipiens midgut extracts produces similar internal damage phenotypes; indicating that the Cx. p. pipiens midgut factor(s) that damage mf in vivo are soluble and stable in physiological buffer, and inflict damage on mf in vitro.


Assuntos
Brugia/fisiologia , Culex/parasitologia , Filariose/parasitologia , Insetos Vetores/parasitologia , Aedes/parasitologia , Animais , Brugia/isolamento & purificação , Sistema Digestório/parasitologia , Feminino , Gerbillinae , Interações Hospedeiro-Parasita , Humanos
16.
Lab Anim (NY) ; 39(5): 143-8, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20410898

RESUMO

Abdominal lavage is used in laboratory rodents for a variety of applications but carries an inherent risk of abdominal organ laceration; therefore, personnel carrying out this procedure must have considerable expertise. In this paper, the authors describe an improved method for delivering sterile media to and collecting peritoneal fluids from dark-clawed Mongolian gerbils (Meriones unguiculatus) that had been peritoneally infected with filarial nematode parasites (genus Brugia). To carry out this gravity-assisted technique, the authors used a catheter to introduce sterile media into the peritoneal cavity of each gerbil and then to passively drain peritoneal fluid and larval worms for collection. Average fluid recovery was consistently greater when using this gravity-assisted method than when using aspiration. Larval parasites were recovered by both methods. To recover large volumes of fluid using the standard method of abdominal lavage, personnel typically must euthanize rodents. This gravity-assisted technique allows researchers to collect large numbers of parasite larvae without euthanizing gerbils.


Assuntos
Cateterismo/veterinária , Gerbillinae/fisiologia , Ciência dos Animais de Laboratório/instrumentação , Lavagem Peritoneal/instrumentação , Animais , Animais de Laboratório , Brugia/isolamento & purificação , Modelos Animais de Doenças , Filariose Linfática/parasitologia , Ciência dos Animais de Laboratório/métodos , Masculino , Doenças Parasitárias em Animais/parasitologia , Lavagem Peritoneal/métodos , Manejo de Espécimes
17.
J Parasitol ; 96(2): 412-9, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19916630

RESUMO

Dirofilaria ursi is a filarial nematode of American black bears (Ursus americanus Pallas, 1780) that is vectored by black flies (Simuliidae) in many parts of the United States. In northwestern Wisconsin, the prevalence of microfilaremic bears during the fall hunting season was 21% (n = 47). Unsheathed blood microfilariae from Wisconsin bears possess characters consistent with the original description of D. ursi, as do adult worms observed histologically and grossly. Immunohistochemistry was used to identify the Wolbachia endosymbiont in the hypodermis and lateral cords of an adult female D. ursi. Amplification of wsp, gatB, coxA, fbpA, and ftsZ bacterial sequences from parasite DNA confirmed the presence of Wolbachia, and molecular phylogenetic analysis of the Wolbachia ftsZ gene groups the endosymbiont with Wolbachia from D. immitis and D. repens. Phylogenetic analysis of D. ursi 5s rDNA sequence confirms the morphological observations grouping this parasite as a member of Dirofilaria, and within the Dirofilaria - Onchocerca clade of filarial nematodes. This is the first report of Wolbachia characterization and molecular phylogeny information for D. ursi.


Assuntos
Dirofilaria/classificação , Dirofilariose/parasitologia , Simbiose , Ursidae/parasitologia , Wolbachia/fisiologia , Animais , Proteínas da Membrana Bacteriana Externa/genética , DNA Bacteriano/química , DNA de Helmintos/química , DNA Ribossômico/química , Dirofilaria/anatomia & histologia , Dirofilaria/genética , Dirofilaria/microbiologia , Dirofilariose/epidemiologia , Cães , Feminino , Imuno-Histoquímica/veterinária , Masculino , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase/veterinária , Prevalência , RNA Ribossômico 5S/genética , Alinhamento de Sequência/veterinária , Wisconsin/epidemiologia , Wolbachia/classificação , Wolbachia/genética
18.
Parasitol Res ; 106(1): 227-35, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19894065

RESUMO

Brugia malayi and Brugia pahangi microfilariae (mf) require a maturation period of at least 5 days in the mammalian host to successfully infect laboratory mosquitoes. This maturation process coincides with changes in the surface composition of mf that likely are associated with changes in gene expression. To test this hypothesis, we verified the differential infectivity of immature (< or =3 day) and mature (>30 day) Brugia mf for black-eyed Liverpool strain of Aedes aegypti and then assessed transcriptome changes associated with microfilarial maturation by competitively hybridizing microfilarial cDNAs to the B. malayi oligonucleotide microarray. We identified transcripts differentially abundant in immature (94 in B. pahangi and 29 in B. malayi) and mature (64 in B. pahangi and 14 in B. malayi) mf. In each case, >40% of Brugia transcripts shared no similarity to known genes or were similar to genes with unknown function; the remaining transcripts were categorized by putative function based on sequence similarity to known genes/proteins. Microfilarial maturation was not associated with demonstrable changes in the abundance of transmembrane or secreted proteins; however, immature mf expressed more transcripts associated with immune modulation, neurotransmission, transcription, and cellular cytoskeleton elements, while mature mf displayed increased transcripts potentially encoding hypodermal/muscle and surface molecules, e.g., cuticular collagens and sheath components. The results of the homologous B. malayi microarray hybridization were validated by quantitative reverse transcriptase polymerase chain reaction. These findings preliminarily lend support to the underlying hypothesis that changes in microfilarial gene expression drive maturation-associated changes that influence the parasite to develop in compatible vectors.


Assuntos
Brugia Malayi/crescimento & desenvolvimento , Brugia Malayi/patogenicidade , Brugia pahangi/crescimento & desenvolvimento , Brugia pahangi/patogenicidade , Culicidae/parasitologia , Análise de Sequência com Séries de Oligonucleotídeos , Animais , Brugia Malayi/genética , Brugia pahangi/genética , Regulação da Expressão Gênica no Desenvolvimento , Estágios do Ciclo de Vida
19.
Vet Parasitol ; 145(1-2): 152-5, 2007 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-17194547

RESUMO

White-tailed deer (Odocoileus virginianus) serve to maintain the Neospora caninum life cycle in the wild. Sera from white-tailed deer from south central Wisconsin and southeastern Missouri, USA were tested for antibodies to N. caninum by Western blot analyses and two indirect ELISAs. Seroreactivity against N. caninum surface antigens was observed in 30 of 147 (20%) of WI deer and 11 of 23 (48%) of MO deer using Western blot analysis. Compared to Western blot, the two indirect ELISAs were found to be uninformative due to degradation of the field-collected samples. The results indicate the existence of N. caninum antibodies in MO and WI deer, and that Western blot is superior to ELISA for serologic testing when using degraded blood samples collected from deer carcasses.


Assuntos
Anticorpos Antiprotozoários/imunologia , Western Blotting/veterinária , Coccidiose/veterinária , Cervos/parasitologia , Ensaio de Imunoadsorção Enzimática/veterinária , Neospora/imunologia , Animais , Coccidiose/sangue , Coccidiose/epidemiologia , Cervos/sangue , Meio-Oeste dos Estados Unidos/epidemiologia
20.
Lab Anim (NY) ; 35(4): 33-40, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16582898

RESUMO

Researchers use the 13-lined ground squirrel for studies of hibernation biochemistry and physiology, as well as for modeling a variety of potential biomedical applications of hibernation physiology. It is currently necessary to capture research specimens from the wild; this presents a host of unknown variables, not least of which is the stress of captivity. Moreover, many investigators are unfamiliar with the husbandry of this species. The authors describe practical methods for their capture, year-round care (including hibernation), captive mating, and rearing of the young. These practices will allow the researcher to better standardize his or her population of research animals, optimizing the use of this interesting model organism.


Assuntos
Criação de Animais Domésticos/métodos , Cruzamento/métodos , Sciuridae/fisiologia , Manejo de Espécimes/métodos , Animais , Feminino , Masculino , Modelos Animais , Doenças dos Roedores/mortalidade , Doenças dos Roedores/patologia , Medicina Veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...